login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173326
Numbers k such that phi(tau(k)) = sopf(k).
3
4, 8, 32, 1344, 2016, 2025, 2376, 3375, 3528, 4032, 4224, 4704, 4752, 5292, 5376, 5625, 6084, 6804, 7128, 9408, 9504, 10125, 10206, 10935, 12100, 12348, 12672, 16875, 16896, 20412, 21384, 23814, 26136, 28512, 29952, 30375, 31944, 32832, 42768, 46464, 48114
OFFSET
1,1
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113.
FORMULA
{k: A163109(k) = A008472(k)}.
EXAMPLE
4 is in the sequence because tau(4) = 3, phi(3) = 2 and sopf(4) = 2.
8 is in the sequence because tau(8) = 4, phi(4) = 2 and sopf(8) = 2.
MAPLE
A008472 := proc(n) add(p, p= numtheory[factorset](n)) ; end proc:
A163109 := proc(n) numtheory[phi](numtheory[tau](n)) ; end proc:
for n from 1 to 40000 do if A008472(n) = A163109(n) then printf("%d, ", n); end if; end do: # R. J. Mathar, Sep 02 2011
MATHEMATICA
Select[Range[2, 50000], EulerPhi[DivisorSigma[0, #]]==Total[ Transpose[ FactorInteger[#]][[1]]]&] (* Harvey P. Dale, Nov 15 2013 *)
CROSSREFS
Cf. A000005 (tau), A000010 (phi), A008472 (sopf).
Sequence in context: A208924 A032467 A009265 * A173652 A149095 A149096
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 16 2010
EXTENSIONS
Corrected and edited by Michel Lagneau, Apr 25 2010
STATUS
approved