login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172255
Partial sums of the Fermat pseudoprimes to base 2, A001567.
1
341, 902, 1547, 2652, 4039, 5768, 7673, 9720, 12185, 14886, 17707, 20984, 25017, 29386, 33757, 38438, 43899, 50500, 58457, 66778, 75259, 84170, 94431, 105016, 116321, 129122, 142863, 156610, 170591, 185082, 200791, 216632, 233337, 252042
OFFSET
1,1
COMMENTS
The subsequence of pseudoprimes in this sequence begins 341; the next term exceeds a(10000) if it exists. - Charles R Greathouse IV, Aug 22 2012
The subsequence of primes in the sequence begins 7673, 17707, 33757, 270763, 484621.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = SUM[i=1..n] {odd composite numbers n such that 2^(n-1) == 1 mod n}.
EXAMPLE
a(15) = 341 + 561 + 645 + 1105 + 1387 + 1729 + 1905 + 2047 + 2465 + 2701 + 2821 + 3277 + 4033 + 4369 + 4371 = 33757 is prime.
PROG
(PARI) sums(v)=my(s); vector(#v, i, s+=v[i])
sums(select(n->Mod(2, n)^n==2 & !isprime(n), vector(10^5, n, 2*n+1))) \\ Charles R Greathouse IV, Jul 09 2015
CROSSREFS
Sequence in context: A175736 A372896 A179839 * A087835 A271221 A066488
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 29 2010
STATUS
approved