OFFSET
0,2
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
EXAMPLE
Triangle begins as:
1;
2, 2;
1, 2, 1;
-8, 0, 0, -8;
-31, -4, 5, -4, -31;
-74, -10, 22, 22, -10, -74;
-143, -18, 57, 82, 57, -18, -143;
-244, -28, 116, 188, 188, 116, -28, -244;
-383, -40, 205, 352, 401, 352, 205, -40, -383;
-566, -54, 330, 586, 714, 714, 586, 330, -54, -566;
-799, -70, 497, 902, 1145, 1226, 1145, 902, 497, -70, -799;
MAPLE
MATHEMATICA
T[n_, k_]= 1 + (n-(n-1)*k)*(n-(n-1)*(n-k));
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Magma) [1 + (n-(n-1)*k)*(n-(n-1)*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2022
(SageMath)
def A172176(n, k): return 1 + (n-(n-1)*k)*(n-(n-1)*(n-k))
flatten([[A172176(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Jan 28 2010
STATUS
approved