login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172132
Number of ways to place 2 nonattacking knights on an n X n board.
13
0, 6, 28, 96, 252, 550, 1056, 1848, 3016, 4662, 6900, 9856, 13668, 18486, 24472, 31800, 40656, 51238, 63756, 78432, 95500, 115206, 137808, 163576, 192792, 225750, 262756, 304128, 350196, 401302, 457800, 520056, 588448, 663366
OFFSET
1,2
REFERENCES
E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63
FORMULA
a(n) = (n - 1)*(n + 4)*(n^2 - 3*n + 4)/2.
G.f.: 2*(12*x^4-39*x^3+37*x^2-20*x+4)/(x-1)^5. - Vaclav Kotesovec, Mar 25 2010
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Vincenzo Librandi, Apr 30 2013
E.g.f.: (1/2)*(16 + (-16 + 16*x - 2*x^2 + 6*x^3 + x^4)*exp(x)). - G. C. Greubel, Apr 18 2022
MATHEMATICA
Table[(n-1)(n+4)(n^2 -3n +4)/2, {n, 40}] (* Vincenzo Librandi, Apr 30 2013 *)
PROG
(Magma) I:=[0, 6, 28, 96, 252]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
(Magma) [(n-1)*(n+4)*(n^2-3*n+4)/2: n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
(SageMath) [(n-1)*(n+4)*(n^2-3*n+4)/2 for n in (1..40)] # G. C. Greubel, Apr 18 2022
CROSSREFS
Column k=2 of A244081.
Sequence in context: A342380 A138874 A172141 * A011856 A276041 A134416
KEYWORD
easy,nonn
AUTHOR
Vaclav Kotesovec, Jan 26 2010
STATUS
approved