login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170896 Number of ON cells after n generations of the Schrandt-Ulam cellular automaton on the square grid that is described in the Comments. 9
0, 1, 5, 9, 13, 25, 29, 41, 53, 65, 85, 97, 117, 145, 157, 169, 181, 201, 229, 249, 285, 321, 365, 409, 445, 497, 549, 577, 605, 633, 669, 713, 757, 825, 893, 969, 1045, 1105, 1173, 1241, 1309, 1377, 1437, 1473, 1541, 1609, 1693, 1793, 1869, 1945, 2037, 2105, 2189, 2281, 2381, 2521, 2621, 2753, 2869, 2969, 3053, 3129, 3237, 3377, 3485, 3585, 3685, 3817, 3909 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The cells are the squares of the standard square grid.
Cells are either OFF or ON, once they are ON they stay ON, and we begin in generation 1 with 1 ON cell.
Each cell has 4 neighbors, those that it shares an edge with. Cells that are ON at generation n all try simultaneously to turn ON all their neighbors that are OFF. They can only do this at this point in time; afterwards they go to sleep (but stay ON).
A square Q is turned ON at generation n+1 if:
a) Q shares an edge with one and only one square P (say) that was turned ON at generation n (in which case the two squares which intersect Q only in a vertex not on that edge are called Q's "outer squares"), and
b) Q's outer squares were not turned ON in any previous generation.
c) In addition, of this set of prospective squares of the (n+1)th generation satisfying the previous condition, we eliminate all squares which are outer squares of other prospective squares.
A151895, A151906, and A267190 are closely related cellular automata.
REFERENCES
D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191.
LINKS
David Applegate, Table of n, a(n) for n = 0..260 (corrected by Sean A. Irvine)
David Applegate, The movie version
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Sean A. Irvine, Java program (github)
R. G. Schrandt and S. M. Ulam, On recursively defined geometric objects and patterns of growth [Link supplied by Laurinda J. Alcorn, Jan 09 2010.]
N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021
S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 [Annotated scanned copy]
FORMULA
We do not know of a recurrence or generating function.
CROSSREFS
Cf. A139250, A170897 (first differences), A151895, A151896, A151906, A267190.
Sequence in context: A151907 A151895 A267190 * A323106 A257171 A233973
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 09 2010
EXTENSIONS
Entry (including definition) revised by David Applegate and N. J. A. Sloane, Jan 21 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 14:12 EDT 2024. Contains 371960 sequences. (Running on oeis4.)