OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
G.f.: x*(15872*x^13 +6890977*x^12 +423932400*x^11 +7520863426*x^10 +51389080880*x^9 +155692452591*x^8 +223769408736*x^7 +155695145820*x^6 +51387918048*x^5 +7520366095*x^4 +424158512*x^3 +6933762*x^2 +16880*x +1) / (x-1)^16. - Colin Barker, Nov 01 2014
a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16) for n > 15. - Wesley Ivan Hurt, Aug 10 2016
E.g.f.: x*(2 +16894*x +2384431*x^2 +42390055*x^3 +210809445*x^4 + 420716100*x^5 +408747213*x^6 +216628590*x^7 +67128535*x^8 +12662651*x^9 +1479478*x^10 +106470*x^11 +4550*x^12 +105*x^13 +x^14)*exp(x)/2. - G. C. Greubel, Oct 11 2019
MAPLE
MATHEMATICA
Table[n^10*(n^5 + 1)/2, {n, 0, 15}] (* Wesley Ivan Hurt, Aug 10 2016 *)
PROG
(Magma)[n^10*(n^5+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
(PARI) vector(21, m, (m-1)^10*((m-1)^5 + 1)/2) \\ G. C. Greubel, Oct 11 2019
(Sage) [n^10*(n^5 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
(GAP) List([0..20], n-> n^10*(n^5 +1)/2); # G. C. Greubel, Oct 11 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved