OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
From G. C. Greubel, Oct 11 2019: (Start)
G.f.: x*(1 +8689*x +2290554*x^2 +99340346*x^3 +1285757375*x^4 +6420936303*x^5 +13986239532*x^6 +13986239532*x^7 +6420936303*x^8 +1285757375*x^9 +99340346*x^10 +2290554*x^11 +8689*x^12 +x^13)/(1-x)^15.
E.g.f.: x*(2 +8702*x +798300*x^2 +10425850*x^3 +40117560*x^4 +63459200*x^5 +49335160*x^6 +20913070*x^7 +5135175*x^8 +752753*x^9 + 66066*x^10 +3367*x^11 +91*x^12 +x^13)*exp(x)/2. (End)
MAPLE
seq(n^10*(n^4 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
MATHEMATICA
Table[n^10*(n^4 +1)/2, {n, 0, 20}] (* G. C. Greubel, Oct 11 2019 *)
PROG
(Magma)[n^10*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
(PARI) vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ G. C. Greubel, Oct 11 2019
(Sage) [n^10*(n^4 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
(GAP) List([0..20], n-> n^10*(n^4 +1)/2); # G. C. Greubel, Oct 11 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved