login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170796
a(n) = n^10*(n^4 + 1)/2.
5
0, 1, 8704, 2421009, 134742016, 3056640625, 39212315136, 339252774049, 2199560126464, 11440139619681, 50005000000000, 189887885503921, 641990190956544, 1968757122095569, 5556148040106496, 14596751337890625
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
From G. C. Greubel, Oct 11 2019: (Start)
G.f.: x*(1 +8689*x +2290554*x^2 +99340346*x^3 +1285757375*x^4 +6420936303*x^5 +13986239532*x^6 +13986239532*x^7 +6420936303*x^8 +1285757375*x^9 +99340346*x^10 +2290554*x^11 +8689*x^12 +x^13)/(1-x)^15.
E.g.f.: x*(2 +8702*x +798300*x^2 +10425850*x^3 +40117560*x^4 +63459200*x^5 +49335160*x^6 +20913070*x^7 +5135175*x^8 +752753*x^9 + 66066*x^10 +3367*x^11 +91*x^12 +x^13)*exp(x)/2. (End)
MAPLE
seq(n^10*(n^4 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
MATHEMATICA
Table[n^10*(n^4 +1)/2, {n, 0, 20}] (* G. C. Greubel, Oct 11 2019 *)
PROG
(Magma)[n^10*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 26 2011
(PARI) vector(21, m, (m-1)^10*((m-1)^4 + 1)/2) \\ G. C. Greubel, Oct 11 2019
(Sage) [n^10*(n^4 +1)/2 for n in (0..20)] # G. C. Greubel, Oct 11 2019
(GAP) List([0..20], n-> n^10*(n^4 +1)/2); # G. C. Greubel, Oct 11 2019
CROSSREFS
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), this sequence (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), A170802 (m=10).
Sequence in context: A237876 A237874 A252646 * A035909 A031877 A222815
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved