login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170779
a(n) = n^8*(n^7 + 1)/2.
2
0, 1, 16512, 7177734, 536903680, 15258984375, 235093332096, 2373783637372, 17592194433024, 102945587570685, 500000050000000, 2088624191887266, 7703511002284032, 25592946914910739, 77784048516800640
OFFSET
0,3
COMMENTS
Number of unoriented rows of length 15 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=16512, there are 2^15=32768 oriented arrangements of two colors. Of these, 2^8=256 are achiral. That leaves (32768-256)/2=16256 chiral pairs. Adding achiral and chiral, we get 16512. - Robert A. Russell, Nov 13 2018
LINKS
Index entries for linear recurrences with constant coefficients, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
FORMULA
G.f.: (x + 16496*x^2 + 6913662*x^3 + 424040816*x^4 + 7520608675*x^5 + 51388540128*x^6 + 155693747508*x^7 + 223769408736*x^8 + 155693850903*x^9 + 51388458800*x^10 + 7520620846*x^11 + 424050096*x^12 + 6911077*x^13 + 16256*x^14)/(1-x)^16. - G. C. Greubel, Dec 05 2017
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010803(n) + A001016(n)) / 2 = (n^15 + n^8) / 2.
G.f.: (Sum_{j=1..15} S2(15,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..8} S2(8,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..14} A145882(15,k) * x^k / (1-x)^16.
E.g.f.: (Sum_{k=1..15} S2(15,k)*x^k + Sum_{k=1..8} S2(8,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>15, a(n) = Sum_{j=1..16} -binomial(j-17,j) * a(n-j). (End)
E.g.f.: x*(2 +16510*x +2376067*x^2 +42357651*x^3 +210767970*x^4 + 420693539*x^5 +408741361*x^6 +216627841*x^7 +67128490*x^8 + 12662650*x^9 +1479478*x^10 +106470*x^11 +4550*x^12 +105*x^13 +x^14)*exp(x)/2. - G. C. Greubel, Nov 15 2018
MATHEMATICA
Table[n^8*(n^7+1)/2, {n, 0, 30}] (* G. C. Greubel, Dec 05 2017 *)
PROG
(Magma) [n^8*(n^7+1)/2: n in [0..30]]; // Vincenzo Librandi, Aug 26 2011
(PARI) for(n=0, 30, print1(n^8*(n^7+1)/2, ", ")) \\ G. C. Greubel, Dec 05 2017
(Sage) [n^8*(n^7+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
CROSSREFS
Row 15 of A277504.
Cf. A010803 (oriented), A001016 (achiral).
Sequence in context: A234047 A223401 A281480 * A251903 A253956 A253963
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved