login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^8*(n^7 + 1)/2.
2

%I #23 Sep 08 2022 08:45:49

%S 0,1,16512,7177734,536903680,15258984375,235093332096,2373783637372,

%T 17592194433024,102945587570685,500000050000000,2088624191887266,

%U 7703511002284032,25592946914910739,77784048516800640

%N a(n) = n^8*(n^7 + 1)/2.

%C Number of unoriented rows of length 15 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=16512, there are 2^15=32768 oriented arrangements of two colors. Of these, 2^8=256 are achiral. That leaves (32768-256)/2=16256 chiral pairs. Adding achiral and chiral, we get 16512. - _Robert A. Russell_, Nov 13 2018

%H Vincenzo Librandi, <a href="/A170779/b170779.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).

%F G.f.: (x + 16496*x^2 + 6913662*x^3 + 424040816*x^4 + 7520608675*x^5 + 51388540128*x^6 + 155693747508*x^7 + 223769408736*x^8 + 155693850903*x^9 + 51388458800*x^10 + 7520620846*x^11 + 424050096*x^12 + 6911077*x^13 + 16256*x^14)/(1-x)^16. - _G. C. Greubel_, Dec 05 2017

%F From _Robert A. Russell_, Nov 13 2018: (Start)

%F a(n) = (A010803(n) + A001016(n)) / 2 = (n^15 + n^8) / 2.

%F G.f.: (Sum_{j=1..15} S2(15,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..8} S2(8,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.

%F G.f.: x*Sum_{k=0..14} A145882(15,k) * x^k / (1-x)^16.

%F E.g.f.: (Sum_{k=1..15} S2(15,k)*x^k + Sum_{k=1..8} S2(8,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.

%F For n>15, a(n) = Sum_{j=1..16} -binomial(j-17,j) * a(n-j). (End)

%F E.g.f.: x*(2 +16510*x +2376067*x^2 +42357651*x^3 +210767970*x^4 + 420693539*x^5 +408741361*x^6 +216627841*x^7 +67128490*x^8 + 12662650*x^9 +1479478*x^10 +106470*x^11 +4550*x^12 +105*x^13 +x^14)*exp(x)/2. - _G. C. Greubel_, Nov 15 2018

%t Table[n^8*(n^7+1)/2, {n,0,30}] (* _G. C. Greubel_, Dec 05 2017 *)

%o (Magma) [n^8*(n^7+1)/2: n in [0..30]]; // _Vincenzo Librandi_, Aug 26 2011

%o (PARI) for(n=0, 30, print1(n^8*(n^7+1)/2, ", ")) \\ _G. C. Greubel_, Dec 05 2017

%o (Sage) [n^8*(n^7+1)/2 for n in range(30)] # _G. C. Greubel_, Nov 15 2018

%Y Row 15 of A277504.

%Y Cf. A010803 (oriented), A001016 (achiral).

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Dec 11 2009