login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170407
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.
0
1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, -78).
FORMULA
G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +
2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^44 - 12*t^43 - 12*t^42 - 12*t^41 -
12*t^40 - 12*t^39 - 12*t^38 - 12*t^37 - 12*t^36 - 12*t^35 - 12*t^34 -
12*t^33 - 12*t^32 - 12*t^31 - 12*t^30 - 12*t^29 - 12*t^28 - 12*t^27 -
12*t^26 - 12*t^25 - 12*t^24 - 12*t^23 - 12*t^22 - 12*t^21 - 12*t^20 -
12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 -
12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5
- 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1)
MATHEMATICA
coxG[{44, 78, -12}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 23 2017 *)
CROSSREFS
Sequence in context: A170263 A170311 A170359 * A170455 A170503 A170551
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved