login
A170023
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.
0
1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, -78).
FORMULA
G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^36 - 12*t^35 - 12*t^34 - 12*t^33 -
12*t^32 - 12*t^31 - 12*t^30 - 12*t^29 - 12*t^28 - 12*t^27 - 12*t^26 -
12*t^25 - 12*t^24 - 12*t^23 - 12*t^22 - 12*t^21 - 12*t^20 - 12*t^19 -
12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 -
12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4
- 12*t^3 - 12*t^2 - 12*t + 1)
MATHEMATICA
coxG[{36, 78, -12}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 01 2017 *)
CROSSREFS
Sequence in context: A169459 A169507 A169555 * A170071 A170119 A170167
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved