login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169767
Number of closed knight's tour diagrams of a 3 X n chessboard that have "Eulerian symmetry".
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 124, 0, 0, 0, 1404, 0, 0, 0, 12824, 0, 0, 0, 126696, 0, 0, 0, 1222368, 0, 0, 0, 11930192, 0, 0, 0, 115974192, 0, 0, 0, 1128943296, 0, 0, 0, 10984783168, 0, 0, 0, 106897187552, 0, 0, 0, 1040241749856
OFFSET
4,11
COMMENTS
When the board is rotated 180 degrees, the diagram remains the same, and the second half of the tour is the same as the first half before rotation. (If the knight starts at one corner, he reaches the opposite corner after 3n/2 moves.)
REFERENCES
D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.
LINKS
George Jelliss, Open knight's tours of three-rank boards, Knight's Tour Notes, note 3a (21 October 2000).
George Jelliss, Closed knight's tours of three-rank boards, Knight's Tour Notes, note 3b (21 October 2000).
FORMULA
A169767[n]=0 unless n mod 4 = 2.
Generating function: (2*(8*z^14 + 14*z^18 - 182*z^22 - 168*z^26 + 348*z^30 - 1000*z^34 + 13224*z^38 + 22904*z^42 - 105776*z^46 - 111616*z^50 + 292800*z^54 + 217536*z^58 - 294656*z^62 - 114432*z^66 - 22528*z^70 - 44032*z^74 + 180224*z^78 - 65536*z^82 + 32768*z^86))/
(1 - 6*z^4 - 64*z^8 + 200*z^12 + 1000*z^16 - 3016*z^20 - 3488*z^24 + 24256*z^28 - 23776*z^32 - 104168*z^36 + 203408*z^40 + 184704*z^44 - 443392*z^48 - 14336*z^52 + 151296*z^56 - 145920*z^60 + 263424*z^64 - 317440*z^68 - 36864*z^72 + 966656*z^76 - 573440*z^80 - 131072*z^84).
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010
STATUS
approved