login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169769
Number of geometrically distinct closed knight's tours of a 3 X n chessboard.
1
0, 0, 0, 0, 0, 0, 6, 0, 44, 0, 396, 0, 3868, 0, 37070, 0, 362192, 0, 3516314, 0, 34237842, 0, 333077332, 0, 3241403380, 0, 31542464952, 0, 306944118820, 0, 2986962829456, 0, 29066627247828, 0, 282854730020224, 0, 2752516325518516, 0
OFFSET
4,7
REFERENCES
D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, to appear, 2010.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 4..2031 (terms 4..1000 from Alois P. Heinz)
George Jelliss, Open knight's tours of three-rank boards, Knight's Tour Notes, note 3a (21 October 2000).
George Jelliss, Closed knight's tours of three-rank boards, Knight's Tour Notes, note 3b (21 October 2000).
FORMULA
a(n) = A169764(n)/4 + A169768(n)/2.
a(n) = 0 unless n mod 2 = 0.
Generating function: 2*z^10*((-2*(1 + 5*z^2 - 34*z^4 - 116*z^6 + 505*z^8 + 616*z^10 - 3179*z^12 - 4*z^14 + 9536*z^16 - 8176*z^18 - 13392*z^20 + 15360*z^22 + 13888*z^24 + 2784*z^26 - 3328*z^28 - 22016*z^30 + 5120*z^32 + 2048*z^34))/
(-1 + 6*z^2 + 64*z^4 - 200*z^6 - 1000*z^8 + 3016*z^10 + 3488*z^12 - 24256*z^14 + 23776*z^16 + 104168*z^18 - 203408*z^20 - 184704*z^22 + 443392*z^24 + 14336*z^26 - 151296*z^28 + 145920*z^30 - 263424*z^32 + 317440*z^34 + 36864*z^36 - 966656*z^38 + 573440*z^40 + 131072*z^42) -
(1 + 6*z^6 - 31*z^8 + 8*z^10 + 53*z^12 - 179*z^14 + 312*z^16 - 84*z^18 - 1280*z^20 + 1974*z^22 - 1232*z^24 - 858*z^26 + 10320*z^28 - 8154*z^30 + 5556*z^32 + 9972*z^34 - 35152*z^36 + 11992*z^38 - 37920*z^40 - 35856*z^42 + 47488*z^44 - 3888*z^46 + 103264*z^48 + 45344*z^50 - 12608*z^52 + 19520*z^54 - 30336*z^56 + 11072*z^58 - 35328*z^60 - 28160*z^62 - 84480*z^64 - 56832*z^66 + 12288*z^68 + 24576*z^70 + 40960*z^72 + 8192*z^74 + 16384*z^76)/
(-1 + 6*z^4 + 64*z^8 - 200*z^12 - 1000*z^16 + 3016*z^20 + 3488*z^24 - 24256*z^28 + 23776*z^32 + 104168*z^36 - 203408*z^40 - 184704*z^44 + 443392*z^48 + 14336*z^52 - 151296*z^56 + 145920*z^60 - 263424*z^64 + 317440*z^68 + 36864*z^72 - 966656*z^76 + 573440*z^80 + 131072*z^84)).
EXAMPLE
The six solutions for n=10 were first published by Kraitchik in 1927.
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 10 2010, based on a communication from Don Knuth, Apr 28 2010
EXTENSIONS
More terms from R. J. Mathar, Oct 09 2010
STATUS
approved