login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169730
Write the n-th squarefree semiprime as prime(m)*prime(k). Then a(n) is the absolute value of prime(m)*k-prime(k)*m.
1
1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 3, 8, 5, 13, 8, 14, 9, 9, 9, 19, 13, 9, 15, 16, 15, 28, 10, 29, 17, 17, 21, 38, 24, 25, 19, 25, 43, 44, 20, 29, 49, 31, 1, 37, 31, 38, 35, 58, 29, 37, 67, 41, 68, 51, 8, 47, 77, 49, 46, 58, 49, 7, 82, 51, 59, 47, 51, 83, 11, 53, 66, 92
OFFSET
1,5
EXAMPLE
a(1)=1 because prime(1)*2-prime(2)*1=4-3=1; a(2)=1 because prime(1)*3-prime(3)*2=6-5=1.
MAPLE
A006881 := proc(n)
option remember;
if n = 1 then
6;
else
for a from procname(n-1)+1 do
if numtheory[bigomega](a)=2 and issqrfree(a) then
return a;
end if;
end do:
end if;
end proc:
A169730 := proc(n)
local p, k, pm, pk;
p := numtheory[factorset](A006881(n)) ;
pm := op(1, p) ;
pk := op(2, p) ;
k := numtheory[pi](pk) ;
m := numtheory[pi](pm) ;
abs(pm*k-pk*m) ;
end proc:
seq(A169730(n), n=1..72) ; # R. J. Mathar, Jun 02 2016
CROSSREFS
Cf. A006881.
Sequence in context: A301922 A144510 A143670 * A220725 A333142 A196832
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Corrected by R. J. Mathar, Jun 02 2016
STATUS
approved