login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Write the n-th squarefree semiprime as prime(m)*prime(k). Then a(n) is the absolute value of prime(m)*k-prime(k)*m.
1

%I #6 Jun 02 2016 12:53:44

%S 1,1,1,1,2,1,1,7,3,1,3,8,5,13,8,14,9,9,9,19,13,9,15,16,15,28,10,29,17,

%T 17,21,38,24,25,19,25,43,44,20,29,49,31,1,37,31,38,35,58,29,37,67,41,

%U 68,51,8,47,77,49,46,58,49,7,82,51,59,47,51,83,11,53,66,92

%N Write the n-th squarefree semiprime as prime(m)*prime(k). Then a(n) is the absolute value of prime(m)*k-prime(k)*m.

%e a(1)=1 because prime(1)*2-prime(2)*1=4-3=1; a(2)=1 because prime(1)*3-prime(3)*2=6-5=1.

%p A006881 := proc(n)

%p option remember;

%p if n = 1 then

%p 6;

%p else

%p for a from procname(n-1)+1 do

%p if numtheory[bigomega](a)=2 and issqrfree(a) then

%p return a;

%p end if;

%p end do:

%p end if;

%p end proc:

%p A169730 := proc(n)

%p local p,k,pm,pk;

%p p := numtheory[factorset](A006881(n)) ;

%p pm := op(1,p) ;

%p pk := op(2,p) ;

%p k := numtheory[pi](pk) ;

%p m := numtheory[pi](pm) ;

%p abs(pm*k-pk*m) ;

%p end proc:

%p seq(A169730(n),n=1..72) ; # _R. J. Mathar_, Jun 02 2016

%Y Cf. A006881.

%K nonn,less

%O 1,5

%A _Juri-Stepan Gerasimov_, Apr 28 2010

%E Corrected by _R. J. Mathar_, Jun 02 2016