This site is supported by donations to The OEIS Foundation.

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A169625 Coefficients of infinite sum polynomials; p(x,n)=If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*(1 + k + k^2)^Floor[(n - 1)/2]* x^k, {k, 0, Infinity}], (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^ k, {k, 0, Infinity}]] 0
 1, 1, 1, 0, 1, 1, 2, 3, 1, 4, 14, 4, 1, 1, 12, 54, 44, 9, 1, 20, 175, 328, 175, 20, 1, 1, 46, 625, 2012, 1859, 470, 27, 1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1, 1, 152, 5628, 49384, 134870, 127464, 41308, 3992, 81, 1, 232, 14189, 199616, 884498, 1431728, 884498 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Row sums are factorial: {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...}. LINKS FORMULA p(x,n)=If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*(1 + k + k^2)^Floor[(n - 1)/2]* x^k, {k, 0, Infinity}], (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^ k, {k, 0, Infinity}]] EXAMPLE {1}, {1}, {1, 0, 1}, {1, 2, 3}, {1, 4, 14, 4, 1}, {1, 12, 54, 44, 9}, {1, 20, 175, 328, 175, 20, 1}, {1, 46, 625, 2012, 1859, 470, 27}, {1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1}, {1, 152, 5628, 49384, 134870, 127464, 41308, 3992, 81}, {1, 232, 14189, 199616, 884498, 1431728, 884498, 199616, 14189, 232, 1} MATHEMATICA p[x_, n_] = If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*( 1 + k + k^2)^Floor[(n - 1)/2]*x^k, {k, 0, Infinity}], (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^k, {k, 0, Infinity}]] Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}] Flatten[%] CROSSREFS Sequence in context: A079639 A104694 A125182 * A201737 A080063 A187680 Adjacent sequences:  A169622 A169623 A169624 * A169626 A169627 A169628 KEYWORD nonn,uned AUTHOR Roger L. Bagula and Gary W. Adamson, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .