login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A169625 Coefficients of infinite sum polynomials; p(x,n)=If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*(1 + k + k^2)^Floor[(n - 1)/2]* x^k, {k, 0, Infinity}], (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^ k, {k, 0, Infinity}]] 0
1, 1, 1, 0, 1, 1, 2, 3, 1, 4, 14, 4, 1, 1, 12, 54, 44, 9, 1, 20, 175, 328, 175, 20, 1, 1, 46, 625, 2012, 1859, 470, 27, 1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1, 1, 152, 5628, 49384, 134870, 127464, 41308, 3992, 81, 1, 232, 14189, 199616, 884498, 1431728, 884498 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Row sums are factorial:

{1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...}.

LINKS

Table of n, a(n) for n=0..56.

FORMULA

p(x,n)=If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*(1 + k + k^2)^Floor[(n - 1)/2]* x^k, {k, 0, Infinity}],

(1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^ k, {k, 0, Infinity}]]

EXAMPLE

{1},

{1},

{1, 0, 1},

{1, 2, 3},

{1, 4, 14, 4, 1},

{1, 12, 54, 44, 9},

{1, 20, 175, 328, 175, 20, 1},

{1, 46, 625, 2012, 1859, 470, 27},

{1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1},

{1, 152, 5628, 49384, 134870, 127464, 41308, 3992, 81},

{1, 232, 14189, 199616, 884498, 1431728, 884498, 199616, 14189, 232, 1}

MATHEMATICA

p[x_, n_] = If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*( 1 + k + k^2)^Floor[(n - 1)/2]*x^k, {k, 0, Infinity}],

(1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^k, {k, 0, Infinity}]]

Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]

Flatten[%]

CROSSREFS

Sequence in context: A104694 A125182 A270312 * A264794 A264704 A264659

Adjacent sequences:  A169622 A169623 A169624 * A169626 A169627 A169628

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula and Gary W. Adamson, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 03:20 EST 2016. Contains 278755 sequences.