login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318685 Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - 3 T(n-1,k-1) + T(n-1,k-2) for k = 0..2n; T(n,k)=0 for n or k < 0. 1
1, 2, -3, 1, 4, -12, 13, -6, 1, 8, -36, 66, -63, 33, -9, 1, 16, -96, 248, -360, 321, -180, 62, -12, 1, 32, -240, 800, -1560, 1970, -1683, 985, -390, 100, -15, 1, 64, -576, 2352, -5760, 9420, -10836, 8989, -5418, 2355, -720, 147, -18, 1, 128, -1344, 6496, -19152, 38472, -55692, 59906, -48639, 29953, -13923, 4809, -1197, 203, -21, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row n gives coefficients in expansion of (2 - 3*x + x^2)^n. Row sum s(n)= 1 when n = 0 and s(n)= 0 when n > 0, see link. In the center-justified triangle, the sum of numbers along "first layer" skew diagonals pointing top-right are the coefficients in expansion of 1/(1 - 2*x + 3*x^2 - x^3) and the sum of numbers along "first layer" skew diagonals pointing top-left are the coefficients in expansion of 1/(1-x+3*x^2-2x^3), see links. The generating function of the central terms is 1/sqrt(1 + 6*x + x^2), signed version of Central Delannoy numbers A001850.

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

LINKS

Table of n, a(n) for n=0..63.

Shara Lalo, Centre-justified triangle of coefficients in expansions of (2 - 3 x + x^2)^n

Shara Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (2 - 3 x + x^2)^n

FORMULA

T(0,0) = 1; T(n,k) = 2 T(n-1,k) - 3 T(n-1,k-1) + T(n-1,k-2) for k = 0..2n; T(n,k)=0 for n or k < 0.

G.f.: 1/(1 - 2*t + 3*t*x - t*x^2).

EXAMPLE

Triangle begins:

1;

2, -3, 1;

4, -12, 13, -6, 1;

8, -36, 66, -63, 33, -9, 1;

16, -96, 248, -360, 321, -180, 62, -12, 1;

32, -240, 800, -1560, 1970, -1683, 985, -390, 100, -15, 1;

64, -576, 2352, -5760, 9420, -10836, 8989, -5418, 2355, -720, 147, -18, 1;

MATHEMATICA

t[n_, k_] := t[n, k] = Sum[(2^(n - k + i)/(n - k + i)!)*((-3)^(k - 2*i)/(k - 2*i)!)*(1/i!)*n!, {i, 0, k}];

  Flatten[Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}]]

t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2*t[n - 1, k] - 3*t[n - 1, k - 1] + t[n - 1, k - 2]];

  Flatten[Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}]]

CROSSREFS

Cf. A001850.

Sequence in context: A079639 A104694 A125182 * A270312 A169625 A264794

Adjacent sequences:  A318682 A318683 A318684 * A318686 A318687 A318688

KEYWORD

tabf,sign,easy

AUTHOR

Shara Lalo, Sep 06 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 10:56 EST 2021. Contains 349419 sequences. (Running on oeis4.)