login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318685
Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - 3 T(n-1,k-1) + T(n-1,k-2) for k = 0..2n; T(n,k)=0 for n or k < 0.
1
1, 2, -3, 1, 4, -12, 13, -6, 1, 8, -36, 66, -63, 33, -9, 1, 16, -96, 248, -360, 321, -180, 62, -12, 1, 32, -240, 800, -1560, 1970, -1683, 985, -390, 100, -15, 1, 64, -576, 2352, -5760, 9420, -10836, 8989, -5418, 2355, -720, 147, -18, 1, 128, -1344, 6496, -19152, 38472, -55692, 59906, -48639, 29953, -13923, 4809, -1197, 203, -21, 1
OFFSET
0,2
COMMENTS
Row n gives coefficients in expansion of (2 - 3*x + x^2)^n. Row sum s(n)= 1 when n = 0 and s(n)= 0 when n > 0, see link. In the center-justified triangle, the sum of numbers along "first layer" skew diagonals pointing top-right are the coefficients in expansion of 1/(1 - 2*x + 3*x^2 - x^3) and the sum of numbers along "first layer" skew diagonals pointing top-left are the coefficients in expansion of 1/(1-x+3*x^2-2x^3), see links. The generating function of the central terms is 1/sqrt(1 + 6*x + x^2), signed version of Central Delannoy numbers A001850.
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
FORMULA
T(0,0) = 1; T(n,k) = 2 T(n-1,k) - 3 T(n-1,k-1) + T(n-1,k-2) for k = 0..2n; T(n,k)=0 for n or k < 0.
G.f.: 1/(1 - 2*t + 3*t*x - t*x^2).
EXAMPLE
Triangle begins:
1;
2, -3, 1;
4, -12, 13, -6, 1;
8, -36, 66, -63, 33, -9, 1;
16, -96, 248, -360, 321, -180, 62, -12, 1;
32, -240, 800, -1560, 1970, -1683, 985, -390, 100, -15, 1;
64, -576, 2352, -5760, 9420, -10836, 8989, -5418, 2355, -720, 147, -18, 1;
MATHEMATICA
t[n_, k_] := t[n, k] = Sum[(2^(n - k + i)/(n - k + i)!)*((-3)^(k - 2*i)/(k - 2*i)!)*(1/i!)*n!, {i, 0, k}];
Flatten[Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}]]
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2*t[n - 1, k] - 3*t[n - 1, k - 1] + t[n - 1, k - 2]];
Flatten[Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}]]
CROSSREFS
Cf. A001850.
Sequence in context: A079639 A104694 A125182 * A270312 A169625 A264794
KEYWORD
tabf,sign,easy
AUTHOR
Shara Lalo, Sep 06 2018
STATUS
approved