login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of infinite sum polynomials; p(x,n)=If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*(1 + k + k^2)^Floor[(n - 1)/2]* x^k, {k, 0, Infinity}], (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^ k, {k, 0, Infinity}]]
0

%I #2 Oct 12 2012 14:54:57

%S 1,1,1,0,1,1,2,3,1,4,14,4,1,1,12,54,44,9,1,20,175,328,175,20,1,1,46,

%T 625,2012,1859,470,27,1,72,1708,9784,17190,9784,1708,72,1,1,152,5628,

%U 49384,134870,127464,41308,3992,81,1,232,14189,199616,884498,1431728,884498

%N Coefficients of infinite sum polynomials; p(x,n)=If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*(1 + k + k^2)^Floor[(n - 1)/2]* x^k, {k, 0, Infinity}], (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^ k, {k, 0, Infinity}]]

%C Row sums are factorial:

%C {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,...}.

%F p(x,n)=If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*(1 + k + k^2)^Floor[(n - 1)/2]* x^k, {k, 0, Infinity}],

%F (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^ k, {k, 0, Infinity}]]

%e {1},

%e {1},

%e {1, 0, 1},

%e {1, 2, 3},

%e {1, 4, 14, 4, 1},

%e {1, 12, 54, 44, 9},

%e {1, 20, 175, 328, 175, 20, 1},

%e {1, 46, 625, 2012, 1859, 470, 27},

%e {1, 72, 1708, 9784, 17190, 9784, 1708, 72, 1},

%e {1, 152, 5628, 49384, 134870, 127464, 41308, 3992, 81},

%e {1, 232, 14189, 199616, 884498, 1431728, 884498, 199616, 14189, 232, 1}

%t p[x_, n_] = If[Mod[n, 2] == 1, (1 - x)^(n + 1)*Sum[(k + 1)*( 1 + k + k^2)^Floor[(n - 1)/2]*x^k, {k, 0, Infinity}],

%t (1 - x)^(n + 1)*Sum[(1 + k + k^2)^Floor[n/2]*x^k, {k, 0, Infinity}]]

%t Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]

%t Flatten[%]

%K nonn,uned

%O 0,7

%A _Roger L. Bagula_ and _Gary W. Adamson_, Dec 03 2009