login
A169368
Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.
0
1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505408, 21979796247097344, 395636332447752192, 7121453984059539456
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170738, although the two sequences are eventually different.
First disagreement at index 31: a(31) = 864826032550163466760080580787470073685, A170738(31) = 864826032550163466760080580787470073856. - Klaus Brockhaus, Jun 17 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, -153).
FORMULA
G.f.: (t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^31 - 17*t^30 - 17*t^29 - 17*t^28 - 17*t^27 - 17*t^26 - 17*t^25 - 17*t^24 - 17*t^23 - 17*t^22 - 17*t^21 - 17*t^20 - 17*t^19 - 17*t^18 - 17*t^17 - 17*t^16 - 17*t^15 - 17*t^14 - 17*t^13 - 17*t^12 - 17*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
MATHEMATICA
coxG[{31, 153, -17}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 30 2016 *)
CROSSREFS
Cf. A170738 (G.f.: (1+x)/(1-18*x)).
Sequence in context: A169224 A169272 A169320 * A169416 A169464 A169512
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved