login
A169320
Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
0
1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505408, 21979796247097344, 395636332447752192, 7121453984059539456
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170738, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 48045890697231303708893365599303892821, A170738(30) = 48045890697231303708893365599303892992. - Klaus Brockhaus, Jun 22 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, -153).
FORMULA
G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^30 - 17*t^29 - 17*t^28 - 17*t^27 - 17*t^26 - 17*t^25 - 17*t^24 - 17*t^23 - 17*t^22 - 17*t^21 - 17*t^20 - 17*t^19 - 17*t^18 - 17*t^17 - 17*t^16 - 17*t^15 - 17*t^14 - 17*t^13 - 17*t^12 - 17*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
MATHEMATICA
coxG[{30, 153, -17}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 10 2016 *)
CROSSREFS
Cf. A170738 (G.f.: (1+x)/(1-18*x)).
Sequence in context: A169176 A169224 A169272 * A169368 A169416 A169464
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved