login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168950
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.
0
1, 33, 1056, 33792, 1081344, 34603008, 1107296256, 35433480192, 1133871366144, 36283883716608, 1161084278931456, 37154696925806592, 1188950301625810944, 38046409652025950208, 1217485108864830406656, 38959523483674573012992
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170752, although the two sequences are eventually different.
First disagreement at index 22: a(22) = 1338639033841010247980518584876528, A170752(22) = 1338639033841010247980518584877056. - Klaus Brockhaus, Apr 10 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, -496).
FORMULA
G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^22 - 31*t^21 - 31*t^20 - 31*t^19 - 31*t^18 - 31*t^17 - 31*t^16 - 31*t^15 - 31*t^14 - 31*t^13 - 31*t^12 - 31*t^11 - 31*t^10 - 31*t^9 - 31*t^8 - 31*t^7 - 31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[21]]+t^22+1, den=Total[-31 t^Range[21]]+ 496t^22+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Aug 21 2011 *)
CROSSREFS
Cf. A170752 (G.f.: (1+x)/(1-32*x)).
Sequence in context: A168806 A168854 A168902 * A168998 A169046 A169094
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved