login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168949
Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.
0
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170751, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
From Klaus Brockhaus, Apr 10 2011: (Start)
First disagreement between this sequence and A170751 is at index 22:
a(22) = 666416204588529623779853460787696,
A170751(22) = 666416204588529623779853460788192. (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, -465).
FORMULA
G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^22 - 30*t^21 - 30*t^20 - 30*t^19 - 30*t^18 - 30*t^17 - 30*t^16 - 30*t^15 - 30*t^14 - 30*t^13 - 30*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[21]]+t^22+1, den=Total[-30 t^Range[21]]+ 465t^22+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jan 06 2013 *)
CROSSREFS
Cf. A170751 (G.f.: (1+x)/(1-31*x)).
Sequence in context: A168805 A168853 A168901 * A168997 A169045 A169093
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
EXTENSIONS
Edited by Jon E. Schoenfield, Apr 30 2014
STATUS
approved