login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.
0

%I #16 Nov 25 2016 09:56:03

%S 1,32,992,30752,953312,29552672,916132832,28400117792,880403651552,

%T 27292513198112,846067909141472,26228105183385632,813071260684954592,

%U 25205209081233592352,781361481518241362912,24222205927065482250272

%N Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.

%C The initial terms coincide with those of A170751, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%C From _Klaus Brockhaus_, Apr 10 2011: (Start)

%C First disagreement between this sequence and A170751 is at index 22:

%C a(22) = 666416204588529623779853460787696,

%C A170751(22) = 666416204588529623779853460788192. (End)

%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, -465).

%F G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^22 - 30*t^21 - 30*t^20 - 30*t^19 - 30*t^18 - 30*t^17 - 30*t^16 - 30*t^15 - 30*t^14 - 30*t^13 - 30*t^12 - 30*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).

%t With[{num=Total[2t^Range[21]]+t^22+1,den=Total[-30 t^Range[21]]+ 465t^22+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Jan 06 2013 *)

%Y Cf. A170751 (G.f.: (1+x)/(1-31*x)).

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009

%E Edited by _Jon E. Schoenfield_, Apr 30 2014