login
A168918
Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^21 = I.
0
1, 49, 2352, 112896, 5419008, 260112384, 12485394432, 599298932736, 28766348771328, 1380784741023744, 66277667569139712, 3181328043318706176, 152703746079297896448, 7329779811806299029504, 351829430966702353416192
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170768, although the two sequences are eventually different.
First disagreement at index 21: a(21) = 206547920800123013050484913522867048, A170768(21) = 206547920800123013050484913522868224. - Klaus Brockhaus, Apr 08 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, -1128).
FORMULA
G.f.: (t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^21 - 47*t^20 - 47*t^19 - 47*t^18 - 47*t^17 - 47*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).
MATHEMATICA
coxG[{21, 1128, -47}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 23 2019 *)
CROSSREFS
Cf. A170768 (G.f.: (1+x)/(1-48*x)).
Sequence in context: A168774 A168822 A168870 * A168966 A169014 A169062
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved