login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168602
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(2x).
2
1, 1, 4, 29, 348, 7078, 257400, 17567085, 2321150956, 603642816242, 311497277686152, 320223587003352866, 657101019781977963480, 2694116441965648648689708, 22080982977564915182409980400
OFFSET
0,3
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} 2^i * a(i) * a(j) * a(n-i-j-1). - Ilya Gutkovskiy, Nov 12 2021
a(n) ~ c * 2^(n*(n-1)/2), where c = 8.922794036651587033803872123786584213844... - Vaclav Kotesovec, Nov 13 2021
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 29*x^3 + 348*x^4 + 7078*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 66*x^3 + 770*x^4 + 15084*x^5 +...
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = 1 + x*A[x]^2*A[2*x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 13 2021 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*A^2*subst(A, x, 2*x) ); polcoeff(A, n)}
CROSSREFS
Cf. A168603.
Sequence in context: A256006 A137646 A231498 * A368452 A000798 A135485
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2009
STATUS
approved