login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168599
G.f.: exp( Sum_{n>=1} A002426(n)^n * x^n/n ), where A002426(n) is the central trinomial coefficients.
4
1, 1, 5, 119, 32707, 69038213, 1309743837515, 206848589180297555, 281897548265847120670891, 3287603007740009094151486257065, 330891681467139744269091005122077348971
OFFSET
0,3
COMMENTS
Compare to: exp( Sum_{n>=1} A002426(n)*x^n/n ) = g.f. of the Motzkin numbers (A001006).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 119*x^3 + 32707*x^4 +...
log(A(x)) = x + 9*x^2/2 + 343*x^3/3 + 130321*x^4/4 +...+ A002426(n)^n*x^n/n +...
MAPLE
m:=30;
A002426:= n-> add( binomial(n, k)*binomial(k, n-k), k=0..n );
S := series( exp(add(A002426(j)^j*x^j/j, j = 1..m+2)), x, m+1);
seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 16 2021
MATHEMATICA
A002426[n_] := GegenbauerC[n, -n, -1/2];
With[{m=30}, CoefficientList[Series[Exp[Sum[A002426[j]^j*x^j/j, {j, m+2}]], {x, 0, m}], x]] (* G. C. Greubel, Mar 16 2021 *)
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, polcoeff((1+x+x^2)^m, m)^m*x^m/m)+x*O(x^n)), n))}
(Magma)
m:=30;
A002426:= func< n | (&+[ Binomial(n, k)*Binomial(k, n-k): k in [0..n]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!( Exp( (&+[A002426(j)^j*x^j/j: j in [1..m+2]]) ) )); // G. C. Greubel, Mar 16 2021
(Sage)
m=30
def A002426(n): return sum( binomial(n, k)*binomial(k, n-k) for k in (0..n) )
def A168598_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( exp( sum( A002426(j)^j*x^j/j for j in [1..m+2])) ).list()
A168598_list(m) # G. C. Greubel, Mar 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 01 2009
STATUS
approved