login
A168600
E.g.f. satisfies: A(x) = exp( x*A(2x)^2 ).
2
1, 1, 9, 265, 19889, 3506801, 1417530745, 1302573091513, 2700478102745057, 12518436654808255585, 128568477648089286062441, 2900655737241126221237790185, 142677722979145454671155940121233, 15200178301599487957128451391538504145
OFFSET
0,3
LINKS
EXAMPLE
E.g.f: A(x) = 1 + x + 9*x^2/2! + 265*x^3/3! + 19889*x^4/4! +...
MAPLE
F:= A -> A(x) - exp(x*A(2*x)^2):
Extend:= proc(ff)
local f1x, m, f2, S, R, i;
f1x:= ff(x); m:= degree(f1x, x);
f2:= unapply(ff(x) + add(a[i]*x^i, i=m+1..2*m+1), x);
S:= series(F(f2), x, 2*m+2);
R:= solve(identity(convert(S, polynom), x), {seq(a[i], i=m+1..2*m+1)});
unapply(subs(R, f2(x)), x);
end proc:
g:= 1:
for iter from 1 to 5 do g:= Extend(g) od:
seq(coeff(g(x), x, j)*j!, j=0..31); # Robert Israel, Feb 22 2019
MATHEMATICA
nmax = 13; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Exp[x A[2 x]^2] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. HoldPattern[a[n_] -> k_] :> Set[a[n], k n!];
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(x*subst(A, x, 2*x)^2) ); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A306535 A144684 A191960 * A088672 A300169 A157571
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2009
STATUS
approved