login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168577
Pascal's triangle, first two columns and diagonal removed.
0
3, 6, 4, 10, 10, 5, 15, 20, 15, 6, 21, 35, 35, 21, 7, 28, 56, 70, 56, 28, 8, 36, 84, 126, 126, 84, 36, 9, 45, 120, 210, 252, 210, 120, 45, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 78, 286, 715, 1287, 1716, 1716, 1287
OFFSET
2,1
COMMENTS
Row sums are 3, 10, 25, 56, 119, 246, .. (A000247).
FORMULA
T(n,k)= [x^k] ((x + 1)^n - x^n - n*x - 1), 2<=k<n.
T(n,k) = binomial(n,k).
EXAMPLE
3;
6, 4;
10, 10, 5;
15, 20, 15, 6;
21, 35, 35, 21, 7;
28, 56, 70, 56, 28, 8;
36, 84, 126, 126, 84, 36, 9;
45, 120, 210, 252, 210, 120, 45, 10;
55, 165, 330, 462, 462, 330, 165, 55, 11;
66, 220, 495, 792, 924, 792, 495, 220, 66, 12;
78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13;
MATHEMATICA
p[x_, n_] = ((x + 1)^n - x^n - n*x - 1)/x^2;
Table[CoefficientList[p[x, n], x], {n, 3, 13}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Roger L. Bagula, Nov 30 2009
STATUS
approved