login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275985
Least k such that n divides phi(k!) (k > 0).
2
1, 3, 6, 4, 10, 6, 14, 4, 7, 10, 22, 6, 26, 14, 10, 5, 34, 7, 38, 10, 14, 22, 46, 6, 11, 26, 9, 14, 58, 10, 62, 5, 22, 34, 14, 7, 74, 38, 26, 10, 82, 14, 86, 22, 10, 46, 94, 6, 21, 11, 34, 26, 106, 9, 22, 14, 38, 58, 118, 10, 122, 62, 14, 6, 26, 22, 134, 34, 46, 14, 142, 7, 146
OFFSET
1,2
LINKS
FORMULA
From Robert Israel, Aug 15 2016: (Start)
If m and n are coprime then a(m*n) = max(a(m),a(n)).
a(n) <= 2n, with equality iff n is an odd prime.
Suppose p is an odd prime. Then
a(p) = 2p
If 2p+1 is prime then a(p^2) = 2p+1 and a(p^3) = 3p.
Otherwise a(p^2) = 3p and a(p^3) = 4p. (End)
EXAMPLE
a(4) = 4 because 4 divides phi(4!) = 8.
MAPLE
A:= proc(n) option remember;
local F, p, e, t, k;
F:= ifactors(n)[2];
if nops(F)=1 then
p:= F[1][1];
e:= F[1][2];
if p = 2 then
t:= 1; if e=1 then return 3 fi;
else
t:= 0
fi;
for k from 2*p by p do
t:= t + padic:-ordp(k, p);
if t >= e then return k fi;
if isprime(k+1) then
t:= t+padic:-ordp(k, p);
if t >= e then return(k+1) fi;
fi;
od
else
max(seq(procname(t[1]^t[2]), t=F))
fi
end proc:
A(1):= 1:
map(A, [$1..100]); # Robert Israel, Aug 15 2016
MATHEMATICA
With[{ep=Table[{EulerPhi[k!], k}, {k, 200}]}, Table[SelectFirst[ep, Divisible[#[[1]], n]&], {n, 80}]][[All, 2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 22 2018 *)
PROG
(PARI) a(n) = {my(k = 1); while(eulerphi(k!) % n, k++); k; }
CROSSREFS
Cf. A048855.
Sequence in context: A316478 A242224 A294671 * A163294 A168577 A122634
KEYWORD
nonn,look
AUTHOR
Altug Alkan, Aug 15 2016
STATUS
approved