login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168276
a(n) = 2*n - (-1)^n - 1.
4
2, 2, 6, 6, 10, 10, 14, 14, 18, 18, 22, 22, 26, 26, 30, 30, 34, 34, 38, 38, 42, 42, 46, 46, 50, 50, 54, 54, 58, 58, 62, 62, 66, 66, 70, 70, 74, 74, 78, 78, 82, 82, 86, 86, 90, 90, 94, 94, 98, 98, 102, 102, 106, 106, 110, 110, 114, 114, 118, 118, 122, 122, 126, 126, 130, 130
OFFSET
1,1
FORMULA
a(n) = 4*n - a(n-1) - 4, with n>1, a(1)=2.
from R. J. Mathar, Nov 25 2009: (Start)
a(n) = 2*n - (-1)^n - 1.
a(n) = 2*A109613(n-1).
G.f.: 2*x*(1 + x^2)/((1+x)*(1-x)^2). (End)
a(n) = a(n-1) + a(n-2) - a(n-3). - Vincenzo Librandi, Sep 16 2013
a(n) = A168277(n) + 1. - Vincenzo Librandi, Sep 17 2013
E.g.f.: (-1 + 2*exp(x) + (2*x -1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 16 2016
Sum_{n>=1} 1/a(n)^2 = Pi^2/16. - Amiram Eldar, Aug 21 2022
MATHEMATICA
CoefficientList[Series[2 (1 + x^2) / ((1 + x) (1 - x)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 16 2013 *)
Table[2 n - 1 - (-1)^n, {n, 70}] (* Bruno Berselli, Sep 17 2013 *)
LinearRecurrence[{1, 1, -1}, {2, 2, 6}, 70] (* Harvey P. Dale, Oct 22 2014 *)
PROG
(Magma) [2*n-1-(-1)^n: n in [1..70]]; // Vincenzo Librandi, Sep 16 2013
CROSSREFS
Cf. A063210. - R. J. Mathar, Nov 25 2009
Sequence in context: A151888 A320046 A289835 * A039722 A237363 A082542
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Nov 22 2009
EXTENSIONS
Previous definition replaced with closed-form expression by Bruno Berselli, Sep 17 2013
STATUS
approved