Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Aug 21 2022 04:39:45
%S 2,2,6,6,10,10,14,14,18,18,22,22,26,26,30,30,34,34,38,38,42,42,46,46,
%T 50,50,54,54,58,58,62,62,66,66,70,70,74,74,78,78,82,82,86,86,90,90,94,
%U 94,98,98,102,102,106,106,110,110,114,114,118,118,122,122,126,126,130,130
%N a(n) = 2*n - (-1)^n - 1.
%H Vincenzo Librandi, <a href="/A168276/b168276.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F a(n) = 4*n - a(n-1) - 4, with n>1, a(1)=2.
%F from _R. J. Mathar_, Nov 25 2009: (Start)
%F a(n) = 2*n - (-1)^n - 1.
%F a(n) = 2*A109613(n-1).
%F G.f.: 2*x*(1 + x^2)/((1+x)*(1-x)^2). (End)
%F a(n) = a(n-1) + a(n-2) - a(n-3). - _Vincenzo Librandi_, Sep 16 2013
%F a(n) = A168277(n) + 1. - _Vincenzo Librandi_, Sep 17 2013
%F E.g.f.: (-1 + 2*exp(x) + (2*x -1)*exp(2*x))*exp(-x). - _G. C. Greubel_, Jul 16 2016
%F Sum_{n>=1} 1/a(n)^2 = Pi^2/16. - _Amiram Eldar_, Aug 21 2022
%t CoefficientList[Series[2 (1 + x^2) / ((1 + x) (1 - x)^2), {x, 0, 80}], x] (* _Vincenzo Librandi_, Sep 16 2013 *)
%t Table[2 n - 1 - (-1)^n, {n, 70}] (* _Bruno Berselli_, Sep 17 2013 *)
%t LinearRecurrence[{1,1,-1},{2,2,6},70] (* _Harvey P. Dale_, Oct 22 2014 *)
%o (Magma) [2*n-1-(-1)^n: n in [1..70]]; // _Vincenzo Librandi_, Sep 16 2013
%Y Cf. A039722, A168277.
%Y Cf. A063210. - _R. J. Mathar_, Nov 25 2009
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Nov 22 2009
%E Previous definition replaced with closed-form expression by _Bruno Berselli_, Sep 17 2013