login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167857
Numbers whose divisors are represented by an integer polynomial.
1
1, 2, 3, 5, 7, 9, 10, 11, 13, 17, 19, 22, 23, 25, 29, 31, 34, 37, 41, 43, 46, 47, 49, 53, 55, 58, 59, 61, 67, 71, 73, 79, 82, 83, 85, 89, 91, 94, 97, 101, 103, 106, 107, 109, 113, 115, 118, 121, 127, 131, 133, 137, 139, 142, 145, 149, 151, 157, 163, 166, 167, 169, 171
OFFSET
1,2
COMMENTS
That is, these numbers n have the property that there is a polynomial f(x) with integer coefficients whose values at x=0..tau(n)-1 are the divisors of n, where tau(n) is the number of divisors of n.
Every prime has this property, as do 1 and 9, the squares of primes of the form 6k+1, and semiprimes p*q with p and q both primes of the form 3k-1 or 3k+1. Terms of the form p^2*q also appear. We can find terms of the form p^m for any m. For example, 2311^13 is the smallest 13th power that appears. For any m, it seems that p^m appears for p a prime of the form k*m#+1, where m# is the product of the primes up to m. Are there terms with three distinct prime divisors?
EXAMPLE
The divisors of 55 are (1, 5, 11, 55). The polynomial 1+15x-17x^2+6x^3 takes these values at x=0..3.
MATHEMATICA
Select[Range[1000], And @@ IntegerQ /@ CoefficientList[Expand[InterpolatingPolynomial[Divisors[ # ], x+1]], x] &]
PROG
(PARI) is(n)=my(d=divisors(n)); denominator(content(polinterpolate([0..#d-1], d))) == 1 \\ Charles R Greathouse IV, Jan 29 2016
CROSSREFS
Cf. A108164, A108166, A112774 (forms of semiprimes)
Cf. A002476 (primes of the form 6k+1)
Cf. A132230 (primes of the form 30k+1)
Cf. A073103 (primes of the form 210k+1)
Cf. A073917 (least prime of the form k*prime(n)#+1)
Sequence in context: A035061 A302403 A096738 * A117284 A137377 A274793
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 13 2009
STATUS
approved