OFFSET
1,1
COMMENTS
By definition, q = p+2. Hence (p+q)/6 = (p+p+2)/6 = (2p+2)/6 = (p+1)/3. Thus a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..2000
FORMULA
a(n) = 2*A002822(n). - R. J. Mathar, Nov 09 2009
a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009
EXAMPLE
First (lesser of twin prime pair) excluding (3,5) = 5; (5+1)/3 = 2, hence A167379(1) = 2. The 10th (lesser of twin prime pair) excluding (3,5) = 137; (137+1)/3 = 46, hence A167379(10)= 46. - Jonathan Vos Post, Nov 03 2009
MATHEMATICA
Total[#]/6&/@Select[Partition[Prime[Range[3, 500]], 2, 1], #[[2]]-#[[1]] == 2&] (* Harvey P. Dale, Jan 30 2013 *)
2 Select[Range[35000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Jun 13 2016 *)
PROG
(Magma) [2*n: n in [1..630] | IsPrime(6*n+1) and IsPrime(6*n-1)]; // Vincenzo Librandi, Jun 13 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Nov 02 2009
EXTENSIONS
Edited (but not checked) by N. J. A. Sloane, Nov 02 2009
Extended by R. J. Mathar, Nov 09 2009
STATUS
approved