login
A167379
Let p and q be twin primes, excluding the pair (3,5). Then p+q is always divisible by 6 and we set a(n) = (p+q)/6.
4
2, 4, 6, 10, 14, 20, 24, 34, 36, 46, 50, 60, 64, 66, 76, 80, 90, 94, 104, 116, 140, 144, 154, 174, 190, 200, 206, 214, 220, 270, 274, 276, 286, 294, 340, 344, 350, 354, 364, 384, 410, 426, 430, 434, 440, 476, 484, 494, 496, 536, 540, 556, 566, 574, 596, 624, 626
OFFSET
1,1
COMMENTS
By definition, q = p+2. Hence (p+q)/6 = (p+p+2)/6 = (2p+2)/6 = (p+1)/3. Thus a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009
LINKS
FORMULA
a(n) = 2*A002822(n). - R. J. Mathar, Nov 09 2009
a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009
EXAMPLE
First (lesser of twin prime pair) excluding (3,5) = 5; (5+1)/3 = 2, hence A167379(1) = 2. The 10th (lesser of twin prime pair) excluding (3,5) = 137; (137+1)/3 = 46, hence A167379(10)= 46. - Jonathan Vos Post, Nov 03 2009
MATHEMATICA
Total[#]/6&/@Select[Partition[Prime[Range[3, 500]], 2, 1], #[[2]]-#[[1]] == 2&] (* Harvey P. Dale, Jan 30 2013 *)
2 Select[Range[35000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Jun 13 2016 *)
PROG
(Magma) [2*n: n in [1..630] | IsPrime(6*n+1) and IsPrime(6*n-1)]; // Vincenzo Librandi, Jun 13 2016
CROSSREFS
Cf. A002822. [Zak Seidov, Nov 02 2009]
Sequence in context: A121386 A007777 A082379 * A213476 A277085 A094589
KEYWORD
nonn
AUTHOR
Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Nov 02 2009
EXTENSIONS
Edited (but not checked) by N. J. A. Sloane, Nov 02 2009
Extended by R. J. Mathar, Nov 09 2009
STATUS
approved