|
|
A167379
|
|
Let p and q be twin primes, excluding the pair (3,5). Then p+q is always divisible by 6 and we set a(n) = (p+q)/6.
|
|
3
|
|
|
2, 4, 6, 10, 14, 20, 24, 34, 36, 46, 50, 60, 64, 66, 76, 80, 90, 94, 104, 116, 140, 144, 154, 174, 190, 200, 206, 214, 220, 270, 274, 276, 286, 294, 340, 344, 350, 354, 364, 384, 410, 426, 430, 434, 440, 476, 484, 494, 496, 536, 540, 556, 566, 574, 596, 624, 626
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
By definition, q = p+2. Hence (p+q)/6 = (p+p+2)/6 = (2p+2)/6 = (p+1)/3. Thus a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..2000
|
|
FORMULA
|
a(n) = 2*A002822(n). - R. J. Mathar, Nov 09 2009
a(n) = (1+A001359(n+1))/3. - Jonathan Vos Post, Nov 03 2009
|
|
EXAMPLE
|
First (lesser of twin prime pair) excluding (3,5) = 5; (5+1)/3 = 2, hence A167379(1) = 2. The 10th (lesser of twin prime pair) excluding (3,5) = 137; (137+1)/3 = 46, hence A167379(10)= 46. - Jonathan Vos Post, Nov 03 2009
|
|
MATHEMATICA
|
Total[#]/6&/@Select[Partition[Prime[Range[3, 500]], 2, 1], #[[2]]-#[[1]] == 2&] (* Harvey P. Dale, Jan 30 2013 *)
2 Select[Range[35000], PrimeQ[6 # - 1] && PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Jun 13 2016 *)
|
|
PROG
|
(MAGMA) [2*n: n in [1..630] | IsPrime(6*n+1) and IsPrime(6*n-1)]; // Vincenzo Librandi, Jun 13 2016
|
|
CROSSREFS
|
Cf. A002822. [Zak Seidov, Nov 02 2009]
Sequence in context: A121386 A007777 A082379 * A213476 A277085 A094589
Adjacent sequences: A167376 A167377 A167378 * A167380 A167381 A167382
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Nov 02 2009
|
|
EXTENSIONS
|
Edited (but not checked) by N. J. A. Sloane, Nov 02 2009
Extended by R. J. Mathar, Nov 09 2009
|
|
STATUS
|
approved
|
|
|
|