login
A167102
Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
1
1, 49, 2352, 112896, 5419008, 260112384, 12485394432, 599298932736, 28766348771328, 1380784741023744, 66277667569139712, 3181328043318706176, 152703746079297896448, 7329779811806299028328, 351829430966702353303296
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170768, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, -1128).
FORMULA
G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).
MATHEMATICA
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
coxG[{13, 1128, -47}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 16 2021 *)
CROSSREFS
Sequence in context: A166324 A166443 A166855 * A167646 A167879 A167988
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved