login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166953
Number of ways of writing n as the sum of 3^n squares.
1
1, 6, 144, 23400, 26620002, 216778910040, 13069351570163616, 6019308484501930839936, 21708290476794620365667887680, 624502420526473667139055032092300382
OFFSET
0,2
FORMULA
a(n) equals the coefficient of x^n in the (3^n)-th power of Jacobi theta_3(x).
G.f.: A(x) = Sum_{n>=0} log( theta_3(3^n*x) )^n/n! where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
EXAMPLE
G.f.: A(x) = 1 + 6*x + 144*x^2 + 23400*x^3 + 26620002*x^4 +...
Let F(x) = theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2),
then A(x) = 1 + log(F(3*x)) + log(F(9*x))^2/2! + log(F(27*x))^3/3! + log(F(81*x))^4/4! + ...
Illustrate a(n) = [x^n] F(x)^(3^n) by forming a table of
coefficients in powers F(x)^(3^n), which begin:
F^(3^0): [(1), 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, ...];
F^(3^1): [1, (6), 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, ...];
F^(3^2): [1, 18, (144), 672, 2034, 4320, 7392, 12672, 22608, ...];
F^(3^3): [1, 54, 1404, (23400), 280854, 2586168, 19014840, ...];
F^(3^4): [1, 162, 12960, 682560, (26620002), 819916992, ...];
F^(3^5): [1, 486, 117612, 18896328, 2267559846, (216778910040), ...]; ...
and noting that the coefficients along the diagonal (in parenthesis)
form the initial terms of this sequence.
PROG
(PARI) {a(n)=local(THETA3=1+2*sum(k=1, sqrtint(n), x^(k^2))+x*O(x^n)); polcoeff(THETA3^(3^n), n)}
(PARI) {a(n)=local(THETA3=1+2*sum(k=1, sqrtint(n), x^(k^2))+x*O(x^n)); polcoeff(sum(k=0, n, log(subst(THETA3, x, 3^k*x))^k/k!), n)}
CROSSREFS
Sequence in context: A379452 A307416 A133460 * A280847 A041271 A196964
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 26 2009
STATUS
approved