Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #2 Mar 30 2012 18:37:18
%S 1,6,144,23400,26620002,216778910040,13069351570163616,
%T 6019308484501930839936,21708290476794620365667887680,
%U 624502420526473667139055032092300382
%N Number of ways of writing n as the sum of 3^n squares.
%F a(n) equals the coefficient of x^n in the (3^n)-th power of Jacobi theta_3(x).
%F G.f.: A(x) = Sum_{n>=0} log( theta_3(3^n*x) )^n/n! where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
%e G.f.: A(x) = 1 + 6*x + 144*x^2 + 23400*x^3 + 26620002*x^4 +...
%e Let F(x) = theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2),
%e then A(x) = 1 + log(F(3*x)) + log(F(9*x))^2/2! + log(F(27*x))^3/3! + log(F(81*x))^4/4! + ...
%e Illustrate a(n) = [x^n] F(x)^(3^n) by forming a table of
%e coefficients in powers F(x)^(3^n), which begin:
%e F^(3^0): [(1), 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, ...];
%e F^(3^1): [1, (6), 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, ...];
%e F^(3^2): [1, 18, (144), 672, 2034, 4320, 7392, 12672, 22608, ...];
%e F^(3^3): [1, 54, 1404, (23400), 280854, 2586168, 19014840, ...];
%e F^(3^4): [1, 162, 12960, 682560, (26620002), 819916992, ...];
%e F^(3^5): [1, 486, 117612, 18896328, 2267559846, (216778910040), ...]; ...
%e and noting that the coefficients along the diagonal (in parenthesis)
%e form the initial terms of this sequence.
%o (PARI) {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(3^n),n)}
%o (PARI) {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n)); polcoeff(sum(k=0,n,log(subst(THETA3,x,3^k*x))^k/k!),n)}
%Y Cf. A000122, A005875, A008452, variants: A166947, A158113.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Oct 26 2009