login
A166647
Totally multiplicative sequence with a(p) = 7*(p+1) for prime p.
2
1, 21, 28, 441, 42, 588, 56, 9261, 784, 882, 84, 12348, 98, 1176, 1176, 194481, 126, 16464, 140, 18522, 1568, 1764, 168, 259308, 1764, 2058, 21952, 24696, 210, 24696, 224, 4084101, 2352, 2646, 2352, 345744, 266, 2940, 2744, 388962, 294, 32928, 308
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (7*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (7*(p(k)+1)^e(k).
a(n) = A165828(n) * A003959(n) = 7^bigomega(n) * A003959(n) = 7^A001222(n) * A003959(n).
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*7^(PrimeOmega[n]), {n, 1, 100}] (* G. C. Greubel, May 20 2016 *)
f[p_, e_] := (7*(p+1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = 7*(f[k, 1]+1)); factorback(f); } \\ Michel Marcus, May 21 2016
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Oct 18 2009
STATUS
approved