login
A166644
Totally multiplicative sequence with a(p) = 4*(p+1) for prime p.
2
1, 12, 16, 144, 24, 192, 32, 1728, 256, 288, 48, 2304, 56, 384, 384, 20736, 72, 3072, 80, 3456, 512, 576, 96, 27648, 576, 672, 4096, 4608, 120, 4608, 128, 248832, 768, 864, 768, 36864, 152, 960, 896, 41472, 168, 6144, 176, 6912, 6144, 1152, 192, 331776
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (4*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (4*(p(k)+1)^e(k).
a(n) = A165825(n) * A003959(n) = 4^bigomega(n) * A003959(n) = 4^A001222(n) * A003959(n).
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*4^(PrimeOmega[n]), {n, 1, 100}] (* G. C. Greubel, May 20 2016 *)
f[p_, e_] := (4*(p+1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = 4*(f[k, 1]+1)); factorback(f); } \\ Michel Marcus, May 21 2016
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Oct 18 2009
STATUS
approved