login
A166649
Totally multiplicative sequence with a(p) = 9*(p+1) for prime p.
2
1, 27, 36, 729, 54, 972, 72, 19683, 1296, 1458, 108, 26244, 126, 1944, 1944, 531441, 162, 34992, 180, 39366, 2592, 2916, 216, 708588, 2916, 3402, 46656, 52488, 270, 52488, 288, 14348907, 3888, 4374, 3888, 944784, 342, 4860, 4536, 1062882, 378
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (9*(p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (9*(p(k)+1))^e(k).
a(n) = A165830(n) * A003959(n) = 9^bigomega(n) * A003959(n) = 9^A001222(n) * A003959(n).
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*9^(PrimeOmega[n]), {n, 1, 100}] (* G. C. Greubel, May 21 2016 *)
f[p_, e_] := (9*(p+1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = 9*(f[k, 1]+1)); factorback(f); } \\ Michel Marcus, May 21 2016
CROSSREFS
KEYWORD
nonn,easy,mult,changed
AUTHOR
Jaroslav Krizek, Oct 18 2009
STATUS
approved