login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166578
a(n) = a(n-3) + 2^(n-4) with a(1) = 1, a(2) = 2, a(3) = 1.
1
1, 2, 1, 2, 4, 5, 10, 20, 37, 74, 148, 293, 586, 1172, 2341, 4682, 9364, 18725, 37450, 74900, 149797, 299594, 599188, 1198373, 2396746, 4793492, 9586981, 19173962, 38347924, 76695845, 153391690, 306783380, 613566757, 1227133514, 2454267028
OFFSET
0,2
COMMENTS
a(n) and successive differences: 1,1,2,1,2,4,5,10,20,37; 0,1,-1,1,2,1,5,10,17,37; 1,-2,2,1,-1,4,5,7,20,37; -3,4,-1,-2,5,1,2,13,17,34; 7,-5,-1,7,-4,1,11,4,17,43; -12,4,8,-11,5,10,-7,13,26,25; Rows must be taken by pairs (companions because a(n)-a(n-3) alternatively gives A131577 and A011782 also companions). Note a(3n+2)=2*a(3n+1)=4*a(3n), n positive; see A113405. Sum of consecutive three terms of even rows gives 0,4,32,256.
FORMULA
For n > 4, a(n) = 2a(n-1) + a(n-3) - 2a(n-4).
a(3n) = (8^n - 8)/14 + 1, a(3n-1) = (8^n - 8)/28 + 2, a(3n-2) = (8^n - 8)/56 + 1.
G.f.: (1-3*x^2-x^3)/(1-2*x-x^3+2*x^4). - Colin Barker, Jan 25 2012
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==2, a[3]==1, a[n]==a[n-3]+2^(n-4)}, a[n], {n, 40}] (* or *) LinearRecurrence[{2, 0, 1, -2}, {1, 2, 1, 2}, 40] (* Harvey P. Dale, Sep 14 2011 *)
PROG
(PARI) Vec((1-3*x^2-x^3)/(1-2*x-x^3+2*x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 25 2012
CROSSREFS
Sequence in context: A245660 A034804 A050042 * A138256 A214783 A360279
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 17 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Nov 04 2009
STATUS
approved