login
A166421
Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1
1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582640801, 99099301148651700, 2576581829864707275, 66991127576476229100, 1741769316988221795300
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (25,25,25,25,25,25,25,25,25,25,-325).
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
From G. C. Greubel, Jan 17 2023: (Start)
a(n) = 25*Sum_{j=1..10} a(n-j) - 325*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 26*x + 350*x^11 - 325*x^12). (End)
MATHEMATICA
With[{p=325, q=25}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 13 2016; Jul 25 2024 *)
coxG[{11, 325, -25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 22 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^11)/(1-26*x+350*x^11-325*x^12) )); // G. C. Greubel, Jul 25 2024
(SageMath)
def A166421_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-26*x+350*x^11-325*x^12) ).list()
A166421_list(30) # G. C. Greubel, Jul 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved