login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166288
Triangle read by rows: T(n,k) is the number of Dyck paths with no UUU's and no DDD's, of semilength n and having k UDUD's (0<=k <= n-1; U=(1,1), D=(1,-1)).
4
1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 4, 5, 6, 1, 1, 6, 12, 9, 8, 1, 1, 9, 23, 24, 14, 10, 1, 1, 17, 38, 56, 40, 20, 12, 1, 1, 26, 84, 100, 110, 60, 27, 14, 1, 1, 46, 145, 250, 210, 190, 84, 35, 16, 1, 1, 81, 280, 480, 580, 385, 301, 112, 44, 18, 1, 1, 135, 551, 995, 1225, 1155, 644, 448, 144, 54, 20, 1, 1
OFFSET
1,4
COMMENTS
Sum of entries in row n = A004148(n+1) (the secondary structure numbers).
T(n,0) = A166289(n).
Sum(k*T(n,k), k=0..n-1) = A166290(n).
LINKS
FORMULA
G.f.: G(t,z) -1, where G=G(t,z) satisfies z^3*G^2 - (1+z-tz)(1-tz-z^2)G+(1+z-tz)^2=0.
EXAMPLE
T(5,2) = 6 because we have (UDUDUD)UUDD, UDU(UDUDUD)D, UUDD(UDUDUD), U(UDUD)D(UDUD), U(UDUDUD)DUD, and (UDUD)U(UDUD)D (the UDUD's are shown between parentheses).
Triangle starts:
1;
1, 1;
2, 1, 1;
2, 4, 1, 1;
4, 5, 6, 1, 1;
6, 12, 9, 8, 1, 1;
9, 23, 24, 14, 10, 1, 1;
...
MAPLE
F := RootOf(z^3*G^2-(1+z-t*z)*(1-t*z-z^2)*G+(1+z-t*z)^2, G): Fser := series(F, z = 0, 15): for n to 12 do P[n] := sort(coeff(Fser, z, n)) end do: for n to 12 do seq(coeff(P[n], t, j), j = 0 .. n-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; `if`(y<0 or y>x or t=8, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 7, 4, 7, 2, 2, 8][t])
+`if`(t=4, z, 1) *b(x-1, y-1, [5, 3, 6, 3, 6, 8, 3][t]))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=1..15); # Alois P. Heinz, Jun 04 2014
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x || t == 8, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 7, 4, 7, 2, 2, 8}[[t]] ] + If[t == 4, z, 1]*b[x-1, y-1, {5, 3, 6, 3, 6, 8, 3}[[t]] ]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
CROSSREFS
T(2n,n) gives A333156.
Sequence in context: A131054 A267998 A265005 * A327001 A249138 A376555
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 12 2009
STATUS
approved