login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166287
Number of peak plateaux in all Dyck paths of semilength n with no UUU's and no DDD's (U=(1,1), D=(1,-1)).
2
0, 0, 0, 1, 3, 8, 21, 53, 133, 334, 839, 2112, 5329, 13475, 34143, 86674, 220400, 561309, 1431522, 3655480, 9345287, 23916622, 61267207, 157088278, 403103955, 1035192885, 2660312103, 6841157380, 17603254230, 45321606641, 116748360064
OFFSET
0,5
COMMENTS
A peak plateau is a run of consecutive peaks that is preceded by an upstep U and followed by a down step D; a peak consists of an upstep followed by a downstep.
LINKS
FORMULA
a(n) = Sum_{k>=0} k*A166285(n,k).
G.f.: G=(1-z-z^2-h)/[2(1-z)h], where h = sqrt((1-3z+z^2)(1+z+z^2)).
a(n) ~ (3+sqrt(5))^n / (5^(1/4) * sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: n*a(n) +(-4*n+3)*a(n-1) +3*(n-1)*a(n-2) +(n-9)*a(n-3) +(3*n-5)*a(n-4) +(-3*n+7)*a(n-5) +(-2*n+13)*a(n-6) +(n-6)*a(n-7)=0. - R. J. Mathar, Jun 14 2016
Conjecture: n*(2*n-5)*(2*n-7)*a(n) -(2*n-7)*(6*n^2-17*n+8)*a(n-1) +(n-2)*(4*n^2-16*n-1)*a(n-2) +(-4*n^3+32*n^2-71*n+44)*a(n-3) +(2*n-3) (6*n^2-37*n+54)*a(n-4) -(n-4)*(2*n-3)*(2*n-5)*a(n-5)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=3 because we have UDUDUDUD, UDUDUUDD, UDUUDDUD, UD(UUDUDD), UUDDUDUD, UUDDUUDD, (UUDUDD)UD, (UUDUDUDD) (the 3 peak plateaux are shown between parentheses).
MAPLE
h := sqrt((1-3*z+z^2)*(1+z+z^2)): G := ((1-z-z^2-h)*1/2)/((1-z)*h): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
MATHEMATICA
CoefficientList[Series[((1-x-x^2-Sqrt[(1-3*x+x^2)*(1+x+x^2)])*1/2)/((1-x)*Sqrt[(1-3*x+x^2)*(1+x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(((1-x-x^2-sqrt((1-3*x+x^2)*(1+x+x^2))))/(2*(1-x)*sqrt((1-3*x+x^2)*(1+x+x^2))))) \\ G. C. Greubel, Mar 22 2017
CROSSREFS
Cf. A166285.
Sequence in context: A170881 A039671 A267946 * A186812 A027930 A038200
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 12 2009
STATUS
approved