login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166137
a(n) = 5*n*(n+1)/2 - 4.
2
1, 11, 26, 46, 71, 101, 136, 176, 221, 271, 326, 386, 451, 521, 596, 676, 761, 851, 946, 1046, 1151, 1261, 1376, 1496, 1621, 1751, 1886, 2026, 2171, 2321, 2476, 2636, 2801, 2971, 3146, 3326, 3511, 3701, 3896, 4096, 4301, 4511, 4726, 4946, 5171, 5401, 5636
OFFSET
1,2
COMMENTS
Numbers of the form 5*(h+1)*(2*h-1) + 1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 03 2017
FORMULA
a(n) = a(n-1) + 5*n = 3*a(n-1) - 3*a(n-2) + a(n-3) = A166151(n)-1.
O.g.f.: x*(-1 - 8*x + 4*x^2)/(x - 1)^3. [corrected by Georg Fischer, May 11 2019]
E.g.f.: (1/2)*(-8 + 10*x + 5*x^2)*exp(x). - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = 1/4 + (2*Pi/sqrt(185))*tan(sqrt(37/5)*Pi/2). - Amiram Eldar, Feb 20 2023
MAPLE
A166137:=n->5*n*(n+1)/2-4; seq(A166137(n), n=1..100); # Wesley Ivan Hurt, Nov 12 2013
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 11, 26}, 50] (* Vincenzo Librandi, Mar 15 2012 *)
Table[5 n (n + 1)/2 - 4, {n, 47}] (* or *)
Rest@ CoefficientList[Series[x (-1 - 8 x + 4 x^2)/(x - 1)^3, {x, 0, 47}], x] (* Michael De Vlieger, Apr 27 2016 *)
PROG
(PARI) for(n=1, 40, print1(5*n*(n+1)/2-4", ")); \\ Vincenzo Librandi, Mar 15 2012
(Magma) I:=[1, 11, 26]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
(Magma) [5*n*(n+1)/2-4: n in [0..40]]; // Bruno Berselli, Feb 03 2017
CROSSREFS
Cf. A166151.
Sequence in context: A100566 A101969 A139576 * A212018 A046806 A224197
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 08 2009
EXTENSIONS
Definition replaced by polynomial from R. J. Mathar, Oct 12 2009
STATUS
approved