login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166132
a(n) = 1 + (4*9^n - 9*4^n) / 5.
1
1, 37, 469, 4789, 45397, 417781, 3796885, 34319413, 309464533, 2787540085, 25097297941, 225913430197, 2033371866709, 18300950780149, 164710972940437, 1482408420140341, 13341714435968725, 120075584542541173
OFFSET
1,2
COMMENTS
Variable N_{LNR}(n) of the number of grid points triangulating snowflakes (Neuberger et al.).
LINKS
John M. Neuberger, Nandor Sieben, James W. Swift, Computing Eigenfunctions on the Koch Snowflake: A New Grid and Symmetry, arXiv:1010.0775 [math.DS], 2010.
FORMULA
a(n) = 14*a(n-1) - 49*a(n-2) + 36*a(n-3).
G.f.: -x*(1+23*x) / ((x-1)*(4*x-1)*(9*x-1)).
a(n) = A002451(n-1) + 23*A002451(n-2).
E.g.f.: (1/5)*(5*exp(x) + 4*exp(9*x) - 9*exp(4*x)). - G. C. Greubel, Apr 26 2016
MAPLE
A := proc(n) 1+(4*9^n-9*4^n)/5 ; end proc: seq(A(n), n=1..60) ;
MATHEMATICA
LinearRecurrence[{14, -49, 36}, {1, 37, 469}, 50] (* G. C. Greubel, Apr 26 2016 *)
Table[1 + (4*9^n - 9*4^n)/5, {n, 24}] (* or *)
Rest@ CoefficientList[Series[-x (1 + 23 x)/((x - 1) (4 x - 1) (9 x - 1)), {x, 0, 24}], x] (* Michael De Vlieger, Apr 27 2016 *)
CROSSREFS
Sequence in context: A081764 A142567 A142286 * A342901 A086025 A197215
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Oct 06 2010
STATUS
approved