Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Apr 28 2016 11:22:58
%S 1,37,469,4789,45397,417781,3796885,34319413,309464533,2787540085,
%T 25097297941,225913430197,2033371866709,18300950780149,
%U 164710972940437,1482408420140341,13341714435968725,120075584542541173
%N a(n) = 1 + (4*9^n - 9*4^n) / 5.
%C Variable N_{LNR}(n) of the number of grid points triangulating snowflakes (Neuberger et al.).
%H G. C. Greubel, <a href="/A166132/b166132.txt">Table of n, a(n) for n = 1..500</a>
%H John M. Neuberger, Nandor Sieben, James W. Swift, <a href="http://arxiv.org/abs/1010.0775"> Computing Eigenfunctions on the Koch Snowflake: A New Grid and Symmetry</a>, arXiv:1010.0775 [math.DS], 2010.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (14,-49,36).
%F a(n) = 14*a(n-1) - 49*a(n-2) + 36*a(n-3).
%F G.f.: -x*(1+23*x) / ((x-1)*(4*x-1)*(9*x-1)).
%F a(n) = A002451(n-1) + 23*A002451(n-2).
%F E.g.f.: (1/5)*(5*exp(x) + 4*exp(9*x) - 9*exp(4*x)). - _G. C. Greubel_, Apr 26 2016
%p A := proc(n) 1+(4*9^n-9*4^n)/5 ; end proc: seq(A(n),n=1..60) ;
%t LinearRecurrence[{14, -49, 36}, {1, 37, 469}, 50] (* _G. C. Greubel_, Apr 26 2016 *)
%t Table[1 + (4*9^n - 9*4^n)/5, {n, 24}] (* or *)
%t Rest@ CoefficientList[Series[-x (1 + 23 x)/((x - 1) (4 x - 1) (9 x - 1)), {x, 0, 24}], x] (* _Michael De Vlieger_, Apr 27 2016 *)
%K nonn,easy
%O 1,2
%A _Jonathan Vos Post_, Oct 06 2010