login
A166131
a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.
1
1, 4, 9, 15, 20, 46, 39, 43, 52, 76, 64, 83, 118, 92, 166, 154, 128, 146, 173, 236, 228, 190, 283, 215, 434, 240, 246, 395, 607, 377, 357, 536, 349, 492, 519, 444, 722, 430, 635, 814, 598, 512, 541, 562, 700, 821, 633, 708, 893, 729, 738
OFFSET
1,2
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..1973.
EXAMPLE
The table below shows for each value of a(j) the corresponding values of prime(a(j)) and (Sum of the quadratic non-residues of prime(a(j)) - Sum of the quadratic residues of prime(a(j))) / prime(a(j))
.
j a(j) prime(a(j)) (SQN-SQR)/prime(a(j))
-- ---- ----------- ---------------------
1 1 2 0
2 4 7 1
3 9 23 3
4 15 47 5
5 20 71 7
6 46 199 9
7 39 167 11
8 43 191 13
9 52 239 15
10 76 383 17
11 64 311 19
12 83 431 21
13 118 647 23
14 92 479 25
15 166 983 27
16 154 887 29
17 128 719 31
18 146 839 33
19 173 1031 35
20 236 1487 37
21 228 1439 39
22 190 1151 41
23 283 1847 43
24 215 1319 45
25 434 3023 47
26 240 1511 49
27 246 1559 51
28 395 2711 53
29 607 4463 55
30 377 2591 57
31 357 2399 59
32 536 3863 61
33 349 2351 63
34 492 3527 65
35 519 3719 67
36 444 3119 69
37 722 5471 71
38 430 2999 73
39 635 4703 75
40 814 6263 77
41 598 4391 79
42 512 3671 81
43 541 3911 83
44 562 4079 85
45 700 5279 87
46 821 6311 89
47 633 4679 91
48 708 5351 93
49 893 6959 95
50 729 5519 97
51 738 5591 99
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Sequence corrected and comments added by Christopher Hunt Gribble, Oct 10 2009
STATUS
approved