login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166026 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I. 1
1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379275635, 12621216998980800, 366015292970077800, 10614443496121659600, 307818861387220827000, 8926746980220492242400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A170749, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..500

Index entries for linear recurrences with constant coefficients, signature (28,28,28,28,28,28,28,28,28,-406).

FORMULA

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

MAPLE

seq(coeff(series((1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Dec 05 2019

MATHEMATICA

CoefficientList[Series[(1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 21 2016 *)

coxG[{10, 406, -28}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 13 2020 *)

PROG

(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11)) \\ G. C. Greubel, Dec 05 2019

(MAGMA) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11) )); // G. C. Greubel, Dec 05 2019

(Sage)

def A166026_list(prec):

    P.<t> = PowerSeriesRing(ZZ, prec)

    return P((1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11)).list()

A166026_list(30) # G. C. Greubel, Dec 05 2019

(GAP) a:=[30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379275635];; for n in [11..30] do a[n]:=28*Sum([1..9], j-> a[n-j]) - 406*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Dec 05 2019

CROSSREFS

Sequence in context: A164666 A164983 A165515 * A166424 A166617 A167083

Adjacent sequences:  A166023 A166024 A166025 * A166027 A166028 A166029

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 02:46 EST 2022. Contains 350481 sequences. (Running on oeis4.)