login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165965
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663874836, 994236269114880, 22867434189496512, 525950986355068032, 12096872686089474624, 278228071778284843776
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170743, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (22,22,22,22,22,22,22,22,22,-253).
FORMULA
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(253*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^10)/(1-23*t+275*t^10-253*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 26 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^10)/(1-23*t+275*t^10-253*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 18 2016 *)
coxG[{10, 253, -22}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 26 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-23*t+275*t^10-253*t^11)) \\ G. C. Greubel, Sep 26 2019
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-23*t+275*t^10-253*t^11) )); // G. C. Greubel, Sep 26 2019
(Sage)
def A165965_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-23*t+275*t^10-253*t^11)).list()
A165965_list(30) # G. C. Greubel, Sep 26 2019
(GAP) a:=[24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663874836];; for n in [11..30] do a[n]:=22*Sum([1..9], j-> a[n-j]) -253*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 26 2019
CROSSREFS
Sequence in context: A164637 A164959 A165366 * A166418 A166611 A063816
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved