OFFSET
1,1
COMMENTS
If p=2^n-16257 is prime, then 2^(n-1)*p is a solution to sigma(x)-2x = 16256 = 2^7*(2^7-1) = 2*A000396(4).
EXAMPLE
a(7)=14 since 2^14-16257 = 127 is prime.
For exponents a(1)=2 through a(6)=12, we get negative values for 2^a(k)-16257, which are prime in absolute value.
MATHEMATICA
Select[Table[{n, Abs[2^n - 16257]}, {n, 0, 100}], PrimeQ[#[[2]]] &][[All, 1]](* G. C. Greubel, Apr 08 2016 *)
PROG
(PARI) lista(nn) = for(n=1, nn, if(ispseudoprime(abs(2^n-16257)), print1(n, ", "))); \\ Altug Alkan, Apr 08 2016
(Magma) [n: n in [1..1100] |IsPrime(2^n-16257)]; // Vincenzo Librandi, Apr 09 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Oct 11 2009
EXTENSIONS
More terms from Altug Alkan, Apr 08 2016
STATUS
approved